Place value in numbers to 1 million

The position of the digit gives its size

Millions	Hundred thousands	Ten thousands	thousands	spaupuny	tens	units
1	2	3	4	5	6	7

Example

The value of the digit 1 is 1 000 000

The value of the digit '2' is 200 000

The value of the digit '3' is 30 000

The value of the digit '4' is 4000

Round numbers to nearest 10, 100, 1000, 10000, 10000

Example 1- Round 342 679 to the nearest 10 000

- Step 1 Find the 'round-off digit' 4
- Step 2 Look one digit to the right of 4-2

<u>5 or more?</u> NO - leave 'round off digit' unchanged

Replace following digits with zeros
 ANSWER - 340 000

Example 2- Round **45**3 679 to the nearest 100 000

- Step 1 Find the 'round-off digit' 4
- Step 2 Look one digit to the right 5

5 or more? YES - add one to 'round off digit'

Replace following digits with zeros
 ANSWER - 500 000

Negative numbers

A number line is very useful for negative numbers.

The number line below shows:

The number line below shows:

$$-2 + 6 = 4$$

Roman Numerals

The seven main symbols

= 100

= 500

M = 1000

Other useful ones include:

$$XL = 40$$

Written methods for addition

- Line up the digits in the correct columns
- Start from RIGHT to LEFT

Written methods for subtraction

- Line up the digits in the correct columns
- Start from RIGHT to LEFT

Mental methods for addition

• Start from LEFT to RIGHT

Example 1 - think of:

But in your head say:

45 75 77

D

Example 2 - think of:

• But in your head say:

1236 1636 1646 1651

Mental methods for subtraction

Example 1 - think of:

56 - 32 as **56 - 30 -** 2

• But in your head say:

26 24 56

Example 2 - think of:

1236 - 415 as 1236 - 400 - 10 - 5

• But in your head say:

836 826 821 1236

Multi-step problems

Based upon 5/6.

Words associated with addition:

Words associated with subtraction:

Multiples & factors

FACTORS are what divides exactly into a number

e.g. Factors of 12 are: Factors of 18 are:

ucio	71301
1	12
2	6
3	4

101	3 01	Τ.
1	18	
2	9	
3	6	
_		-

The common factors of 12 & 18 are: 1, 2, 3, 6, The Highest Common Factor is: 6

MULTIPLES are the times table answers

•	e.g. i	Multij	oles (of 5 a	re:	<u> </u>
	5	10	15	20	25	

Multiples of 4 are: 4 8 12 16 **20**

The Lowest Common Multiple of 5 and 4 is: 20

Prime numbers

Prime numbers have only TWO factors

The factors of 12 are: 1, 2, 3, 4, 6, 12

1 7 7 IS prime

Factors of 7 are:

Prime numbers to 20

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20

The number 'l' is NOT prime

It has only ONE

Multiplication using a formal method

• By a ONE-DIGIT number

GRID METHOD e.g. 3561 x 7

	3000	500	60	7
7	21000	3500	420	49

21000 + 3500 + 420 + 49 = 24927

By a TWO-DIGIT number

e.g. 152×34 COLUMN METHOD 152 34x 608 (x4) 4560 (x30) 5168

e.g. 152 x 34 GRID METHOD

	100	50	2
30	3000	1500	60
4	400	200	8

 $152 \times 34 = 3400 + 1700 + 68 = 5168$

Division using a formal method

• By a ONE-DIGIT number

e.g.
$$9138 \div 6$$
 $\frac{1526}{6)9^31^13^18}$

• By a TWO-DIGIT number

SAME METHOD

(Except write down some of your tables down first) 32

Multiply & divide by 10, 100, 1000

By moving the decimal point

To multiply by 10 move the dp ONE place RIGHT

$$3.4 \times 10 = 34$$

To divide by 10 move the dp ONE place LEFT

e.g.
$$13 \div 10 = 1.3$$

$$\sqrt{3}.4 \div 10 = 0.34$$

By moving the digits

To multiply by 10 move the digits ONE place LEFT e.g. 3.52×10

To multiply or divide by 100 move TWO places To multiply or divide by 1000 move THREE places

Square & Cube numbers

Cube numbers 1x1x1 2x2x2 3x3x3 4x4x4 13 23 33 43 1 8 27 64

Fractions

- To compare fractions
 - the denominators must be the same

$$\frac{2}{3} \text{ and } \frac{5}{6}$$

$$\frac{4}{6} \text{ and } \frac{5}{6}$$

$$50 \frac{5}{6} \text{ is bigger than } \frac{2}{3}$$

To add and subtract fractions

When the denominators are the same

$$\frac{5}{8} + \frac{1}{8} = \frac{6}{8}$$

$$\frac{5}{8} - \frac{1}{8} = \frac{4}{8}$$

To add subtract fractions

When the denominators are different

Equivalent fractions

These fractions are the same but can be drawn and written in different ways

$$\frac{3}{4} = \frac{12}{16}$$

$$\frac{3^{(x4)}}{4^{(x4)}} = \frac{12}{16}$$

Fractions can also be divided to make the fraction look simpler - this is called CANCELLING or LOWEST FORM

$$\frac{12}{16} \stackrel{(\div 4)}{(\div 4)} = \frac{3}{4}$$

Mixed & improper fractions

An improper fraction is top heavy
 & can be changed into a mixed number

A mixed number can be changed back into an improper fraction

$$1_{x}^{+1} = \frac{3}{2}$$

$$2_{x}^{+3} = \frac{11}{4}$$

Multiply fractions

Multiply is the same as repeated addition

OR

Round decimals

Rules for rounding

- 1. Find the 'round off' digit
- 2. Move one digit to its right
- 3. Is this digit 5 or more

Yes - add one to the round off digit No - don't change the round off digit

- To the nearest whole number
- e.g. 1 To round 5.62 to the nearest whole

'round off' digit

this digit is 5 or more

5.62 rounded to nearest whole = 6

- e.g. 2 To round 5.32 to the nearest whole
- 'round off' digit

this digit is NOT 5 or

5.32 rounded to nearest whole = 5

- To one decimal place
- e.g. 1 To round 12.37 to 1 decimal place

'round off' digit

this digit is 5 or more

- 12.37 rounded to 1dp = 12.4
- e.g. 2 To round 12.32 to the nearest

whole

'round off' digit this digit is NOT

12.37 rounded to 1dp = 12.3

Read & write decimals

The value of each digit is shown in the table

	hundreds	tens	units	6	tenths	hundredths	thousandths
	3	5	2	•	6	1	7
	300	50	2	1	$\frac{6}{10}$	1/100	7 1000
	352 352					5 <u>1</u> 00	7 1000
						617 1000	

Order decimals

Example - To order 0.28, 0.3, 0.216

- Write them under each other
- Fill gaps with zeros
- Then order them

•

0.28 ----- 0.280

0.3 → 0.300

0.216 ----- 0.216

smallest

largest

Order:

0.216 0.28

0.3

Decimal & Percentage equivalents

Learn

Fraction	Decimal	Percentage
$\frac{1}{2}$	0.5	50%
$\frac{1}{4}$	0.25	25%
$\frac{1}{5}$	0.2	20%
$\frac{1}{10}$	0.1	10%
$\frac{1}{100}$	0.01	1%

Some fractions have to be changed to be 'out of 100'

$$\frac{11}{25}$$
(x4) = $\frac{44}{100}$ = 0.44 = 44%

Convert metric measure

• Mass or weight

Capacity or volume

Imperial measure

1 inch is about 2.5cm

- 1km = 1.6 miles or 5miles = 8km
- 1kg is about 2.2pounds

A litres of water's a pint and three quarters

A gallon is about 4.5 litres

Area & Perimeter

• Estimate area

Number of whole squares \bigcirc = 16 Number of $\frac{1}{2}$ or more (\times) = 5 <u>Estimated area = 21 squares</u>

Shapes composed of rectangles

Put on all missing lengths first For perimeter - ADD all lengths round outside For area - split into rectangles & add them together

Perimeter = 12 + 6 + 4 + 2 + 8 + 4 = 36cm

Area of shape = Area of A + B= (8x4) + (6x4)= 32 + 24 $= 56 \text{cm}^2$

Volume

Volume is measured in cubes

The 1 cm cube

This cuboid contains 12 cubes So the volume is 12 cm³

This 3D shape contains 12 cubes So the volume is 12 cm³

Units of time Time conversion

Time intervals

Always go to the next whole hour first

Example: 0830 to 1125

30min + 2h 25min = 2h 55min 0830 0900 1125

2D representations of 3D shapes

• There are 3 views:

Angles

Types of angles

Acute (less than 90°)

Obtuse (Between $90^{\circ} \& 180^{\circ}$)

Measure and draw angles

To be sure, count the number of degrees between the two arms of the angle

<u>Angles</u>

Angles on a straight line add up to 180° or 2 right angles (2 x 90°)

Angles about a point add up to 360° or 4 right angles (4 x 90°)

Properties of the rectangle

- A rectangle is a quadrilateral (4 sided shape)
- All angles are 90°

Opposite sides are equal

• Opposite sides are parallel

• Diagonals are equal

• Diagonals bisect each other (cut in half)

A square is a special rectangle

Reflection

Reflection in a_■vertical line

Reflection in a horizontal line

Translation - 4 right & 1 down

- In reflection and translation the shapes remain the same size and shape -CONGRUENT
- In reflection the shape is flipped over
- In translation the shape stays the same way up

Line graphs

• Find the difference

Example 1: What was the difference in temperature between 1030 and 1130?

Answer: $11.5^{\circ}C - 10^{\circ}C = 1.5^{\circ}C$

• Find the sum of the data

Example: What was the total number of days absent

over the 6 years?

Answer: 3 + 4 + 7 + 7 + 9 + 2 = 32 days

Interpret information in tables

Distance table

Example: Find the distance between Leeds and York

Answer: 40miles

	Hull				
	100	Leeds			
	162	73	Manchester		
	110	60	65	Sheffield	
	63	40	118	95	York

Timetable

Example: How long is the film?

Answer: 1.10 - 2.35 = 1h 25min = 85min

6.30am	Educational programme
7.00	Cartoons
7.25	News and weather
8.00	Wildlife programme
9.00	Children's programme
11.30	Music programme
12.30pm	Sports programme
1.00	News and weather
1.10 - 2.35pm	Film

Table of results of goals scored

Example: Did boys or girls score the most goals?

Answer: Boys: 6+3+3+6=18

Girls: 7+5=12

Boys scored the most goals

	Game 1	Game 2	Game 3	Game 4	Game 5	Frequency
Peter	1	0	0	2	3	6
John	0	2	1	0	0	3
Ryan	1	0	1	1	0	3
Claire	2	0	2	1	2	7
Bill	3	1	1	0	1	6
Susan	0	1	3	1	0	5