Place value in numbers to 10 million

The position of the digit gives its value

Example

The value of the digit ' 1 ' is 10000000
The value of the digit ' 2 ' is 2000000
The value of the digit ' 3 ' is 300000
The value of the digit '4' is 40000

Round whole numbers

Example 1-Round 634679 to the nearest 10000

- Step 1 - Find the 'rounding off digit' - 3
- Step 2 - Move one digit to the right - 4

4 or less? YES - leave 'rounding off digit' the same

- Replace following digits with zeros ANSWER - 630000
Example 2- Round 345679 to the nearest 10000
- Step 1 - Find the 'rounding off digit' - 4
- Step 2 - Move one digit to the right - 5

5 or more? YES - add one to 'rounding off digit'
5 or more? YES - add one to 'rounding off digit'

- Replace following digits with zeros ANSWER - 350000

Negative numbers

$4>-4 \longrightarrow$ We say 4 is larger than - 4 $-4<4 \longrightarrow$ We say -4 is less than 4
Remember the rules:

- When subtracting go down the number line

When adding go up the number line

Mental methods for addition

- Start from LEFT to RIGHT

Example 1 - think of:

$55+44$ as $55+40+4$

- But in your head say:
$55 \quad 95 \quad 99$
Example 2 - think of:
$2347+536$ as $2347+500+30+6$
- But in your head say:

2347284728772883

Mental methods for subtraction
Example 1 - think of:
78-43 as 78-40-3

- But in your head say:

783835
Example 2-think of:
2347-536 as 2347-500-30-6

- But in your head say:
$2347 \quad 18471811$

Addition

- Line up the digits in the correct columns
e.g. $\quad 64 p+£ 3.29+£ 8$
0.64
3.29
+8. 00
£11.93

Subtraction

- Line up the digits in the correct columns
e.g. 645-427

H T U
$6^{3} 4^{15} 5$
6317
-4218

Multiply numbers

e.g. 264×32

COLUMN METHOD
264
$\begin{array}{r} \\ \times 32 \\ \hline\end{array}$
528
7920
8448

Divide numbers

Division using a formal method

- By a ONE-DIGIT number
e.g. $9138 \div 6$

$$
6 \frac{1526}{6 \longdiv { 9 ^ { 3 } 1 ^ { 1 } 3 ^ { 1 } 8 }}
$$

- By a TWO-DIGIT number

LONG DIVISION METHOD

$$
4928 \div 32=
$$

(Except write down some of your tables down first)
32
64
96
128
160
Divide
Subtract
Bring down - Make a new number Divide ...
e.g. $4928 \div 32$

$$
\begin{aligned}
& \frac{0154}{3) 24928} \\
& \frac{-32}{172} \downarrow \\
& \frac{-160}{128} \\
& \frac{-128}{000}
\end{aligned}
$$

$4928 \div 32=\underline{154}$

With a remainder also expressed as a fraction
$\frac{028}{432}$
$\frac{-30}{132}$
$\frac{-120}{12}$
ANSWER - $432 \div 15=28$ r 12 $=28 \frac{12}{15}$

With a remainder expressed as a decimal
$15 \begin{array}{r}028.8 \\ 432.0 \\ -30 \\ 132 \\ -120 \\ 12\end{array}$
ANSWER - $432 \div 15=28.8$

Order of operations

Bracket

Indices
Divide
Multiply
Do these in the order they appear
Add
Subtract $\}$

$$
\begin{gathered}
\text { e.g. } 3+4 \times 6-5=22 \\
4 \text { first } \\
(2+1) \times 3=9 \\
4 \\
\text { first }
\end{gathered}
$$

Factors, multiples \& primes

- FACTORS are what divides exactly into a number
e.g. Factors of 12 are:

1	12
2	6
3	4

Factors of 18 are	
2	9
3	6

The common factors of $12 \& 18$ are: $1,2,3,6$,
The Highest Common Factor is: 6

- PRIME NUMBERS have only TWO factors

e.g. Factors of 7 are:

So 7 and 13 are both prime numbers

- MULTIPLES are the times table answers e.g. Multiples of 5 are:

5	10	15	20	$25 \ldots . .$.

Multiples of 4 are:

4	8	12	16	$20 \ldots . . .$.

The Lowest Common Multiple of 5 and 4 is: 20

Equivalent fractions

- To simplify a fraction

$$
\text { Example: } \frac{27}{36}
$$

First find the highest common factor of the numerator and denominator - which is 9 , then divide

$$
\frac{27}{36}^{\div 9}=\frac{3}{4}
$$

- To change fractions to the same denominator

$$
\text { Example: } \frac{3}{4} \text { and } \frac{2}{3}
$$

Find the highest common multiple of the denominators - which is 12 , then multiply:

$$
\frac{3}{4}_{x 3}^{x 3}=\frac{9}{12} \text { and } \frac{2}{3} \stackrel{\times 4}{=} \frac{8}{12}
$$

Add \& subtract fractions

- Make the denominators the same

$$
\begin{array}{|l|l}
\hline \text { e.g. } \frac{1}{5}+\frac{7}{10} & \text { e.g. } \\
=\frac{4}{5}-\frac{2}{3} \\
=\frac{7}{10} & =\frac{12}{15}-\frac{10}{15} \\
=\frac{9}{10} & =\frac{2}{15}
\end{array}
$$

Multiply fractions

Write 5 as $\frac{5}{1}$
Multiply numerators \& denominators

$$
\text { e.g. } \quad 5 \times \frac{2}{3}
$$

$$
\text { e.g. } \frac{4}{5} \times \frac{2}{3}
$$

$$
=\frac{5}{1} \times \frac{2}{3}
$$

$$
=\frac{8}{15}
$$

$$
=\frac{10}{3}=3 \frac{1}{3}
$$

Divide fractions

- Write 5 as $\frac{5}{1}$
- 0 Invert the fraction after \div sign
- Multiply numerators \& denominators

$$
\begin{array}{l|l}
\hline \text { e.g. } \frac{2}{3} \div 5 & \text { e.g. } \frac{4}{5} \div \frac{2}{3} \\
=\frac{3}{2} \times \frac{1}{5} & =\frac{4}{5} \times \frac{3}{2} \\
=\frac{3}{10} & =\frac{12}{10}=1 \frac{2}{10}=1 \frac{1}{5}
\end{array}
$$

Fraction of quantity

- 4 means $\div 5 \times 4$

5
e.g. To find 4 of $£ 40$
$£ 40 \div 5 \times 4=£ 40$

Multiply/divide decimals by 10,100

- To multiply by 10 , move each digit one place to the left
e.g. $35.6 \times 10=356$

Hundreds	Tens	Units	\bullet	tenths
	3	5	\bullet	6
3	5^{*}	6	\bullet	

- To divide by 10 , move each digit one place to the right
e.g. $35.6 \div 10=356=3.56$

Tens	Units	\bullet	tenths	hundredths
3	5	\bullet	6	
	3	\bullet	6	

- To multiply by 100 , move each digit 2 places to the left
- To divide by 100 , move each digit 2 places to the right

AN ALTERNATE METHOD

Instead of moving the digits
Move the decimal point the opposite way
Multiply decimals
Step 1 - remove the decimal
Step 2 - multiply the two num
Step 3 - Put the decimal back

Example:	0.06×8
	$\Rightarrow 6 \times 8$
\Rightarrow	48
\Rightarrow	0.48

6/11 Divide decimals

Use the bus shelter method
Keep the decimal point in the same place Add zeros for remainders
Example: $6.28 \div 5$
$\frac{1.256}{5) 6.2^{2} 8^{3} 0}$

Percentage of quantity

Use only

- $50 \%-\frac{1}{2}$
- $10 \%-\frac{1}{10}$

A percentage can also be calculated by using long multiplication and dividing the answer by 100

- $1 \%-\frac{1}{100}$

Example: To find 35% of $£ 400$

$$
\begin{aligned}
10 \% & =£ 40 \\
20 \% & =£ 80 \\
5 \% & =£ 20 \\
35 \% & =£ 140
\end{aligned}
$$

Fraction, decimal, percentage
equivalents

LEARN THESE:

$\frac{1}{4}=0.25=25 \%$	$\frac{3}{4}=0.75=75 \%$
$\frac{1}{2}=0.5=50 \%$	$\frac{1}{10}=0.1=10 \%$

Percentage to decimal to fraction
$27 \%=0.27=\frac{27}{100}$
$7 \%=0.07=\frac{7}{100}$
$70 \%=0.7=\frac{70}{100}=\frac{7}{10}$
Decimal to percentage to fraction
$0.3=30 \%=\frac{3}{10}$
$0.03=3 \%=\frac{3}{100}$
$0.39=39 \%=\frac{39}{100}$
Fraction to decimal to percentage

Similar shapes

When a shape is enlarged by a scale factor the two shapes are called SIMILAR shapes

Scale factor $=6 \div 3=2$
Length $a=5 \times 2=10 \mathrm{~cm}$
Length $b=8 \div 2=4 \mathrm{~cm}$

Express missing numbers

algebraically

An unknown number is given a letter
Examples

Use a word formula

Example: - Time to cook a turkey

Cook for 45 min per kg weight
Then a further 45 min
For a 6 kg turkey, follow the formula:
$45 \min \times 6+45$ min
$=270 \mathrm{~min}+45 \mathrm{~min}$
$=315 \mathrm{~min}$
$=\underline{5 h 15 m i n}$

Number sequences

- Understand position and term

Term to term rule $=+4$
Position to term rule is $\times 4-1$
(because position $1 \times 4-1=3$)
nth term $=n \times 4-1=4 n-1$

- Generate terms of a sequence

If the nth term is $5 n+1$
$1^{\text {st }}$ term $(n=1)=5 \times 1+1=6$
$2^{\text {nd }} \operatorname{term}(n=2)=5 \times 2+1=11$
$3^{\text {rd }}$ term $(n=3)=5 \times 3+1=16$

Possible solutions of a number

 sentenceExample: x and y are numbers
Rule: $x+y=5$
Possible solutions: $x=0$ and $y=5$

$$
x=1 \text { and } y=4
$$

$$
x=2 \text { and } y=3
$$

$$
x=3 \text { and } y=2
$$

$$
x=4 \text { and } y=1
$$

$$
x=5 \text { and } y=0
$$

Convert units of measure

METRIC

When converting measurements follow these rules:

- When converting from a larger unit to a smaller unit we multiply (x)
-When converting from a smaller unit to a larger unit we divide (\because)

```
UNITS of LENGTH
10mm=1cm
100cm=1m
1000m=1km
```


UNITS of MASS
 $1000 \mathrm{~g}=1 \mathrm{~kg}$
 $1000 \mathrm{~kg}=1$ tonne

UNITS of TIME

$60 \mathrm{sec}=1 \mathrm{~min}$
$60 \min =1$ hour
$24 \mathrm{~h}=1$ day
365days $=1$ year

UNITS of VOLUME

$1000 \mathrm{ml}=1$ litre 100cl = 1litre

Convert units of measure

METRIC/IMPERIAL

LEARN: 5 miles $=8 \mathrm{~km}$

Perimeter and area of shapes

Shapes can have the SAME area but different perimeters
The area of each shape is 9 squares

Perimeter of each shape is different A-12; B-14; C-16

Area of parallelogram \& triangle

Area of parallelogram
Area of parallelogram $=b \times h$

$$
=8 \times 5
$$

$$
=40 \mathrm{~cm}^{2}
$$

Area of triangle ($\frac{1}{2}$ a parallelogram) Area of triangle $=\frac{b \times h}{2}$

$$
=\frac{8 \times 5}{2}
$$

$$
20 \mathrm{~cm}^{2}
$$

Parts of a circle

- The circumference is the distance all the way around a circle.
- The diameter is the distance right across the middle of the circle, passing through the centre.
- The radius is the distance halfway across the circle.
- The radius is always half the length of the diameter. $(d=2 \times r)$ or $\left(r=\frac{1}{2} \times d\right)$

Position on a co-ordinate grid

Angles and straight lines

Angles on a straight line add up to 180°

- Angles about a point add up to 360°

$$
146^{\circ}+90^{\circ}+124^{\circ}=360^{\circ}
$$

- Vertically opposite angles are equal

Transformations

- Translation -A shape moved along a line

Example - Move shape A 3 right \& 4 down Can also be written as a vector $\binom{3}{-4} \begin{aligned} & \text { Right } \\ & \text { Down }\end{aligned}$

Notice:

- The new shape stays the same way up
- The new shape is the same size
- Reflect a shape in x-axis

- Reflect a shape in y-axis

Graphs
Pie chart

Transport	Frequency	Angle
Car	13	$13 \times 9=117^{\circ}$
Bus	4	$4 \times 9=36^{\circ}$
Walk	15	$15 \times 9=135$
Cycle	8	$8 \times 9=72$

Total frequency $=40$
$360^{\circ} \div 40=9^{\circ}$ per person

- Line graph

Line graphs show changes in a single variable - in this graph changes in temperature can be observed.

The mean

The mean is usually known as the average.
The mean is not a value from the original list.
It is a typical value of a set of data
Mean $=$ total of measures \div no. of measures e.g.- Find mean speed of 6 cars travelling on a road Car 1-66mph
Car 2-57mph
Car 3-71mph
Car 4-54mph
Car 5-69mph
Car 6-58mph

Mean $=\underline{66+57+71+54+69+58}$

$$
\begin{aligned}
& =\frac{375}{6} \\
& =62.5 \mathrm{mph}
\end{aligned}
$$

Mean average speed was 62.5 mph

